
®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 1

Accessibility for Flex and
AIR Applications
Michael A. Jordan
Modernista!
@majornista

Daniel Koestler
Adobe
@antiChipotle

#adobemax155

http://www.twitter.com/majornista�
http://www.twitter.com/antiChipotle�

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 2

Introduction

Why me?

 Working in Flash since version 5

 Took early interest in Flash accessibility after it was introduced with version 6

 Projects for Adobe around Flash and Flex accessibility

1. FLVPlayback component skins with support for captioning

2. Keyboard, screen-reader accessibility, and caption transcripts in FLVPlayback component in Flash CS4

3. Accessible Video Demo as part of WCAG 2.0 Implementation Report
http://www.w3.org/WAI/GL/WCAG20/implementation-report/implementation?implementation_id=68

4. Documentation for flash.accessibility.AccessibilityImplementation class
http://blogs.adobe.com/accessibility/flex/

http://www.w3.org/WAI/GL/WCAG20/implementation-report/implementation?implementation_id=68�
http://blogs.adobe.com/accessibility/flex/�

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 3

Why do Flash accessibility?

Moral Argument

“We don’t block out people for
conditions they cannot readily change.”

—Chris Heilmann
Yahoo!

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 4

Why do Flash accessibility?

Laws and Standards

Section 508

CLF 2.0 DDA

BITV

PubbliAccesso

LSSICE

BehiV

JIS X 8341-3

DDA

NZGWS 2.0

European
Mandate 376

WCAG 2.0

Presenter
Presentation Notes
You may work for a government, business or organization that mandates accessibility compliance. There are many laws and standards around the world. I’m not a lawyer and can’t say that I have read all of the existing regulations, but I would hazard a guess that, for Web content, most if not all of their requirements can be met by satisfying the guidelines set forth by the W3C in version 2 of the Web Content Accessibility Guidelines or WCAG 2.0.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 5

Why do Flash accessibility?

Laws and Standards
 WCAG 2

The Web Content Accessibility Guidelines documents explain how to make Web content
accessible to people with disabilities.

There are 12 guidelines organized around 4 principles.

Presenter
Presentation Notes
The Web Content Accessibility Guidelines documents explain how to make Web content accessible to people with disabilities. There are 12 guidelines organized around 4 principles.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 6

Why do Flash accessibility?

Laws and Standards
 WCAG 2

1. Perceivable

 Provide text alternatives for non-text content.

 Provide captions and alternatives for audio
and video content.

 Make content adaptable; and make it
available to assistive technologies.

 Use sufficient contrast to make things easy
to see and hear.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 7

Why do Flash accessibility?

Laws and Standards
 WCAG 2

1. Perceivable

 Provide text alternatives for non-text content.

 Provide captions and alternatives for audio
and video content.

 Make content adaptable; and make it
available to assistive technologies.

 Use sufficient contrast to make things easy
to see and hear.

2. Operable

 Make all functionality keyboard accessible.

 Give users enough time to read and use
content.

 Do not use content that causes seizures.

 Help users navigate and find content.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 8

Why do Flash accessibility?

Laws and Standards
 WCAG 2

1. Perceivable

 Provide text alternatives for non-text content.

 Provide captions and alternatives for audio
and video content.

 Make content adaptable; and make it
available to assistive technologies.

 Use sufficient contrast to make things easy
to see and hear.

2. Operable

 Make all functionality keyboard accessible.

 Give users enough time to read and use
content.

 Do not use content that causes seizures.

 Help users navigate and find content.

3. Understandable

 Make text readable and understandable.

 Make content appear and operate in
predictable ways.

 Help users avoid and correct mistakes.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 9

Why do Flash accessibility?

Laws and Standards
 WCAG 2

1. Perceivable

 Provide text alternatives for non-text content.

 Provide captions and alternatives for audio
and video content.

 Make content adaptable; and make it
available to assistive technologies.

 Use sufficient contrast to make things easy
to see and hear.

2. Operable

 Make all functionality keyboard accessible.

 Give users enough time to read and use
content.

 Do not use content that causes seizures.

 Help users navigate and find content.

3. Understandable

 Make text readable and understandable.

 Make content appear and operate in
predictable ways.

 Help users avoid and correct mistakes.

4. Robust

 Maximize compatibility with current and
future technologies.

Presenter
Presentation Notes
For each guideline, there are testable success criteria, which are at three levels: A, AA, and AAA.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 10

Why do Flash accessibility?

Making things work for people

 Technically satisfying

 If you were to test-drive a car that worked as poorly, in certain reasonable scenarios, as
the Flash web site that marketed it, would you buy the car?

 Competition from other technologies.

 Javascript: Dojo, jQuery, YUI all implementing WAI-ARIA

 Silverlight: No seriously.

 With AIR, desktop applications.

Presenter
Presentation Notes
Some developers get into 3D, others computational art. I get into making that damn component work with a screen reader the way it’s supposed. I must be wired wrong for a Flash developer.

There is plenty of competition from other technologies in the RIA space especially in education, government and financial services, you’re inaccessible Flash applications may one day be passed over for another accessible alternative.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 11

Brief History of Flash Accessibility

Before Flash 6

 Not much.

 Developers had to “roll their own” rudimentary keyboard focus and tab order.

 No support for assistive technology.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 12

Brief History of Flash Accessibility

Flash 6 (March 2002), Actionscript 1 and 2

 tabIndex, tabEnabled, and tabChildren

 Support for assistive technology through Microsoft Active Accessibility (MSAA) API

 _accProps

 Accessibility.isActive()

 Accessibility.updateProperties()

 Accessibility.sendEvent()

 System.capabilities.hasAccessibility

 Accessible components in AS1, AS2 and Flex 1.5

 Undocumented _accImpl object

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 13

Brief History of Flash Accessibility

Actionscript 3

 flash.accessibility.* package

 flash.accessibility.Accessibility

 _accProps becomes flash.accessibility.AccessibilityProperties

 Undocumented _accImpl becomes recently documented
flash.accessibility.AccessibilityImplementation

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 14

Brief History of Flash Accessibility

AIR 2.0

Introduces support for assistive technologies through MSAA for AIR
applications built in Flex or Flash.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 15

Accessibility in Flex

28 Accessible Flex 3 Components

Accordion
AdvancedDataGrid
Alert
Button
CheckBox
ColorPicker
ComboBox
DataGrid
DateChooser
DateField
Form
Image
Label
LinkButton

List
Menu
MenuBar
Panel
RadioButton
RadioButtonGroup
Slider
TabNavigator
Text
TextArea
TextInput
TitleWindow

 ToolTipManager
Tree

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 16

Accessibility in Flex

Tab order and Reading order

flash.display.InteractiveObject

 .tabIndex : uint
Specifies the tab ordering of objects in a SWF file.

 .tabEnabled : Boolean
Specifies whether a particular object is in the tab order.

flash.display.DisplayObjectContainer

 .tabChildren : Boolean
Determines whether the children of an object are tab enabled.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 17

Accessibility in Flex

Tab order and Reading order
 In MXML:

<mx:VBox id="custInfo" label="Customer Info" fontWeight="bold"
horizontalAlign="center">

<mx:Label text="Customer Info" textAlign="center"

tabIndex="1" />

<mx:HBox horizontalAlign="center">

<mx:Label text="Email Address"

tabIndex="2" />

<mx:TextInput id="email"

tabIndex="3" />

<mx:Button id="emailSubmit" label="Submit"

tabIndex="4" />

</mx:HBox>

</mx:VBox>

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 18

Accessibility in Flex

Tab order and Reading order
 In ActionScript:

private var nextTabIndex:uint = 1;

private function application_creationComplete(evt:FlexEvent):void {
nextTabIndex = assignTabIndexes(panel as InteractiveObject);

}

private function assignTabIndexes(component:InteractiveObject):uint {
component.tabIndex = nextTabIndex++;
if(component is Panel) {

use namespace mx_internal;
var titleBar:UIComponent = Panel(component).getTitleBar() as UIComponent;
if(titleBar) titleBar.tabIndex = nextTabIndex++;

}
if(component is Container){

var children:Array = Container(container).getChildren();
for each(var child:* in children){

if(child is InteractiveObject){
nextTabIndex = assignTabIndexes(child as InteractiveObject);

}
}

}
return nextTabIndex++;

}

Presenter
Presentation Notes
This function shows a basic example of how one might assign tabIndex properties to all InteractiveObjects in a simple Flex application.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 19

Accessibility in Flex

Adjustable Interface
 Resizable text

 High Contrast Mode

 Save Preferences

Presenter
Presentation Notes
Dan will now go into more detail about how he implemented these features in Flex.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 20

Accessibility in Flex

flash.accessibility.AccessibilityProperties

 .name : String
Provides a name for this display object in the accessible presentation.

 .description : String
Provides a description for this display object in the accessible presentation.

 .forceSimple : Boolean
If true, causes Flash Player to exclude child objects within this display object from the
accessible presentation.

 .silent : Boolean
If true, excludes this display object from accessible presentation.

 .shortcut : String
Indicates a keyboard shortcut associated with this display object.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 21

Accessibility in Flex

flash.accessibility.AccessibilityProperties

 In MXML:
<?xml version="1.0" encoding="utf-8"?>
<mx:Application

xmlns:accessibility="flash.accessibility.*"
xmlns:mx="http://www.adobe.com/2006/mxml">

<accessibility:AccessibilityProperties
id="searchInputAccProps"
name="search Adobe.com…" />

<mx:HBox width="100%" height="100%"
horizontalAlign="center" verticalAlign="middle">

<mx:TextInput id="searchInput"
accessibilityProperties="{searchInputAccProps}" />

<mx:Button id="searchSubmit"
label="search" />

</mx:HBox>

</mx:Application>

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 22

Accessibility in Flex

flash.accessibility.AccessibilityProperties

 In ActionScript:

<?xml version="1.0" encoding="utf-8"?>
<mx:Application xmlns:mx="http://www.adobe.com/2006/mxml" layout="absolute">

<mx:Script>
<![CDATA[

import mx.events.FlexEvent;

private function onCreationComplete(evt:FlexEvent):void {
evt.target.accessibilityProperties = new AccessibilityProperties();
evt.target.accessibilityProperties.name = "search Adobe.com…";
Accessibility.updateProperties();

}

]]>
</mx:Script>
<mx:HBox width="100%" height="100%" horizontalAlign="center" verticalAlign="middle" >

<mx:TextInput id="searchInput"
creationComplete="onCreationComplete(event)" />

<mx:Button id="searchSubmit" label="search" />
</mx:HBox>

</mx:Application>

Presenter
Presentation Notes
Note that Accessibility.updateProperties() is a fairly expensive method and should only we called once for a collection of updates occurring at the same time.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 23

Accessibility in Flex

flash.accessibility.Accessibility

 .active : Boolean
[static] [read-only] Indicates whether a screen reader is currently active and the player is
communicating with it.

 .updateProperties() : void
[static] Tells Flash Player to apply any accessibility changes made by using the
DisplayObject.accessibilityProperties property.

 .sendEvent(source:DisplayObject, childID:uint, eventType:uint,
nonHTML:Boolean = false) : void

[static] Sends an event to the Microsoft Active Accessibility API.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 24

Accessibility in Flex

Video and Audio Players

 Captions for all prerecorded audio and synchronized media

 Video controls should be perceivable and operable

 Audio controls should be perceivable and operable

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 25

Accessibility in Flex

Video and Audio Players

[Demo]

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 26

Building Accessible Custom Controls

First Steps

 Extend existing accessible components where possible
or build on what’s already there

 Start with keyboard accessibility
 Build to expected keyboard behavior
http://msdn.microsoft.com/en-
us/library/ms971323.aspx#atg_keyboardshortcuts_dialog_box_and_common_controls_
shortcut_keys

 Focus management

http://msdn.microsoft.com/en-us/library/ms971323.aspx�
http://msdn.microsoft.com/en-us/library/ms971323.aspx�
http://msdn.microsoft.com/en-us/library/ms971323.aspx�

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 27

FlashPlayer and Microsoft Active Accessibility

How MSAA Works

 MSAA provides descriptive and standardized way for applications and
screen readers to communicate on Windows operating systems.

 MSAA conveys an object model of an application.

 Get the tools Active Accessibility 2.0 SDK Tools:
http://www.microsoft.com/downloads/details.aspx?familyid=3755582A-
A707-460A-BF21-1373316E13F0&displaylang=en

Presenter
Presentation Notes
Adobe Flash Player uses Microsoft Active Accessibility (MSAA), which provides a descriptive and standardized way for applications and screen readers to communicate.

MSAA is essentially a middleware architecture that conveys an object model of an application.

This is most easily explained by an example.

For this example we’ll use a tool called AccExplorer, which comes as part of the MSAA SDK which can be downloaded from microsoft.com

http://www.microsoft.com/downloads/details.aspx?familyid=3755582A-A707-460A-BF21-1373316E13F0&displaylang=en�
http://www.microsoft.com/downloads/details.aspx?familyid=3755582A-A707-460A-BF21-1373316E13F0&displaylang=en�

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 28

FlashPlayer and Microsoft Active Accessibility

How MSAA Works

Presenter
Presentation Notes
Adobe Flash Player uses Microsoft Active Accessibility (MSAA), which provides a descriptive and standardized way for applications and screen readers to communicate.

MSAA is essentially a middleware architecture that conveys an object model of an application.

This is most easily explained by an example.

For this example we’ll use a tool called AccExplorer, which comes as part of the MSAA SDK which can be downloaded from microsoft.com

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 29

FlashPlayer and Microsoft Active Accessibility

How MSAA Works

Presenter
Presentation Notes
What's Really Going On?

When Internet Explorer or Firefox loads a new page, it sends an event notification to the MSAA system. A screen reader, as an MSAA client, has registered with MSAA to receive event notifications, so the screen reader becomes aware that the browser has changed its object tree.

The screen reader sends a special window message (WM_GETOBJECT) to the browser, asking for its root object. The browser responds by sending back a pointer to a COM interface of type IAccessible. This interface has a bunch of methods that allow the screen reader to ask for object properties, such as type, name, description, value, and visibility. IAccessible also has methods for traversing the object tree in various ways—abstractly, in terms of tab order, in terms of geometric relationship, or in terms of pixel locations. Finally, IAccessible allows clients to manipulate UI objects programmatically, pressing buttons and altering selection and focus.

The screen reader now traverses the tree of IAccessible objects, building up a tree of COM pointers. For each object discovered, the screen reader determines the type of object (container? button? textfield?, etc.), the object's name, and possibly a few other properties. The screen reader now has enough information to construct its narrative text and feed it into the text-to-speech engine.

The browser, in order to be a proper MSAA server, has two main responsibilities. It must implement the IAccessible interface for every significant onscreen object that it displays, and it must notify the MSAA system whenever any part of the object tree changes. The Flash Player handles these two responsibilities for Flash content.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 30

The FlashPlayer’s accessible object model

FlashPlayer exposes by default

 Text

 Input text fields

 Buttons

 Simple MovieClips

 Scripted MovieClips (Flex and Flash UI Components)

Presenter
Presentation Notes
The Flash Player's Accessible Object Model
The Flash Player's accessible object tree consists of a single top-level container (the root accessible object) containing a flat collection of the following types of objects:

Text. Regions of dynamic or static text in the movie. The principal property of a text object is its name, which, in keeping with MSAA convention, is equal to the contents of the text string being displayed. A text object may also have an associated description string. The Flash Player also makes an attempt to deduce labeling relationships between text and input text fields (text immediately above or to the left of an input text field is be taken as a label for that field), and between text and buttons (text entirely inside a button will be taken as a label for that button). Any text that is deduced to be a label will be omitted from the accessible object tree, and the content of that text will be used as the name of the object that it labels. Labels are never assigned to buttons or text fields that have author-supplied names.

Input text fields. An input text object has a value, and optionally a name, a description string and a keyboard shortcut string. As described above, an input text object's name may come from a text object that is deduced to label it.

Buttons. A button object has a state (pressed or not pressed), supports a programmatic default action that causes the button to depress momentarily, and may optionally have a name, a description string, and a keyboard shortcut string. As described above, a button object's name may come from a text object that is deduced to label it. Movie clips used as buttons in Flash will be described by the player to MSAA as buttons, not as movie clips. The child objects inside buttons are note normally looked at by the player for accessibility purposes—buttons are "leaves" in the accessible object tree. There is one exception: for buttons that do not have author-supplied names, the player will look through the button's child elements (just one child-level deep) for a text element—if one is found, it is taken as a label for the button.

Simple movie clips. All non-scripted movie clips at all levels are classified into one of two categories: simple or non-simple. A movie clip is simple if it does not have any other accessible objects (text, input text, buttons, or components) as children at any level of depth. Non-simple clips are not given any representation in the object tree; instead, their accessible-object contents are promoted into the flat top-level list of accessible objects. Simple clips, on the other hand, do show up in the object tree, expressed to MSAA as an image or animation widget. If a simple clip contains other simple clips, only the topmost simple clip is included in the object tree. A simple clip has a state (animated or not animated), and may optionally have a name and a description string. Note that all video regions are also treated as simple movie clips.

Scripted movie clips. Flex and Flash UI components present a special problem for the Flash Player's accessible object model: they are movie clips or sprites built from collections of text, input text, shapes, and buttons, but if Flash Player were to expose those individual objects to MSAA, the meaning of the overall component will be lost. For this reason, a Flex or Flash UI component may require a custom accessibility implementation. A movie clip or sprite that provides its own accessibility implementation is called a scripted movie clip, and it appears in the accessible object tree. The details of the accessibility implementation depend on the kind of component being implemented and are up to the component developer.
The Flash Player provides the flash.accessibility.AccessibilityImplementation class as a base class for creating custom accessibility implementations for Flex and Flash UI components in ActionScript 3. In Flex, this class is extended by mx.accessibility.AccImpl which serves as the base class for accessibility implementations in Flex components. A new accessibility implementation can be created by extending mx.accessibility.AccImpl for each new component.

When a Flex project is compiled with Generate accessible SWF file set to true, the Flex compiler automatically enables accessibility implementations for the components in the project that have them. At runtime, when the Flash Player discovers a component that has a custom accessibility implementation, it will treat that component as a scripted movie clip.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 31

flash.accessibility.AccessibilityImplementation

The AccessibilityImplementation class is the base class in Flash Player
that allows for the implementation of accessibility in components.

It provides an IAccessible interface for a Flash component

 Methods
 get_accName()

 get_accRole()

 getChildIDArray()

 get_accDefaultAction()

 get_accFocus()

 get_accSelection()

 get_accState()

 get_accValue()

 accLocation()

 accDoDefaultAction()

 accSelect()

Presenter
Presentation Notes
The AccessibilityImplementation class is the base class in Flash Player that allows for the implementation of accessibility in components.

The AccessibilityImplementation class provides a set of methods that allow a component developer to make information about system roles, object based events, and states available to assistive technology.

We’ll go through an example AccessibilityImplementation to explain what they do, and provide an overview of how the methods should be implemented.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 32

Constants in MSAA

Object Roles
ROLE_SYSTEM_ALERT = 0x08;
ROLE_SYSTEM_ANIMATION = 0x36;
ROLE_SYSTEM_APPLICATION = 0x0e;
ROLE_SYSTEM_BORDER = 0x13;
ROLE_SYSTEM_BUTTONDROPDOWN = 0x38;
ROLE_SYSTEM_BUTTONDROPDOWNGRID = 0x3a;
ROLE_SYSTEM_BUTTONMENU = 0x39;
ROLE_SYSTEM_CARET = 0x07;
ROLE_SYSTEM_CELL = 0x1d;
ROLE_SYSTEM_CHARACTER = 0x20;
ROLE_SYSTEM_CHART = 0x11;
ROLE_SYSTEM_CHECKBUTTON = 0x2c;
ROLE_SYSTEM_CLIENT = 0x0a;
ROLE_SYSTEM_CLOCK = 0x3d;
ROLE_SYSTEM_COLUMN = 0x1b;
ROLE_SYSTEM_COLUMNHEADER = 0x19;
ROLE_SYSTEM_COMBOBOX = 0x2e;
ROLE_SYSTEM_CURSOR = 0x06;
ROLE_SYSTEM_DIAGRAM = 0x35;
ROLE_SYSTEM_DIAL = 0x31;
ROLE_SYSTEM_DIALOG = 0x12;
ROLE_SYSTEM_DOCUMENT = 0x0f;
ROLE_SYSTEM_DROPLIST = 0x2f;
ROLE_SYSTEM_EQUATION = 0x37;
ROLE_SYSTEM_GRAPHIC = 0x28;
ROLE_SYSTEM_GRIP = 0x04;
ROLE_SYSTEM_GROUPING = 0x14;
ROLE_SYSTEM_HELPBALLOON = 0x1f;
ROLE_SYSTEM_HOTKEYFIELD = 0x32;
ROLE_SYSTEM_INDICATOR = 0x27;
ROLE_SYSTEM_LINK = 0x1e;

ROLE_SYSTEM_LIST = 0x21;
ROLE_SYSTEM_LISTITEM = 0x22;
ROLE_SYSTEM_MENUBAR = 0x02;
ROLE_SYSTEM_MENUITEM = 0x0c;
ROLE_SYSTEM_MENUPOPUP = 0x0b;
ROLE_SYSTEM_OUTLINE = 0x23;
ROLE_SYSTEM_OUTLINEITEM = 0x24;
ROLE_SYSTEM_PAGETAB = 0x25;
ROLE_SYSTEM_PAGETABLIST = 0x3c;
ROLE_SYSTEM_PANE = 0x10;
ROLE_SYSTEM_PROGRESSBAR = 0x30;
ROLE_SYSTEM_PROPERTYPAGE = 0x26;
ROLE_SYSTEM_PUSHBUTTON = 0x2b;
ROLE_SYSTEM_RADIOBUTTON = 0x2d;
ROLE_SYSTEM_ROW = 0x1c;
ROLE_SYSTEM_ROWHEADER = 0x1a;
ROLE_SYSTEM_SCROLLBAR = 0x03;
ROLE_SYSTEM_SEPARATOR = 0x15;
ROLE_SYSTEM_SLIDER = 0x33;
ROLE_SYSTEM_SOUND = 0x05;
ROLE_SYSTEM_SPINBUTTON = 0x34;
ROLE_SYSTEM_SPLITBUTTON = 0x3e;
ROLE_SYSTEM_STATICTEXT = 0x29;
ROLE_SYSTEM_STATUSBAR = 0x17;
ROLE_SYSTEM_TABLE = 0x18;
ROLE_SYSTEM_TEXT = 0x2a;
ROLE_SYSTEM_TITLEBAR = 0x01;
ROLE_SYSTEM_TOOLBAR = 0x16;
ROLE_SYSTEM_TOOLTIP = 0x0d;
ROLE_SYSTEM_WHITESPACE = 0x3b;
ROLE_SYSTEM_WINDOW = 0x09;

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 33

Constants in MSAA

Object States
STATE_SYSTEM_ALERT_HIGH = 0x10000000;
STATE_SYSTEM_ALERT_LOW = 0x04000000;
STATE_SYSTEM_ALERT_MEDIUM = 0x08000000;
STATE_SYSTEM_ANIMATED = 0x00004000;
STATE_SYSTEM_BUSY = 0x00000800;
STATE_SYSTEM_CHECKED = 0x00000010;
STATE_SYSTEM_COLLAPSED = 0x00000400;
STATE_SYSTEM_DEFAULT = 0x00000100;
STATE_SYSTEM_EXPANDED = 0x00000200;
STATE_SYSTEM_EXTSELECTABLE = 0x02000000;
STATE_SYSTEM_FLOATING = 0x00001000;
STATE_SYSTEM_FOCUSABLE = 0x00100000;
STATE_SYSTEM_FOCUSED = 0x00000004;
STATE_SYSTEM_HOTTRACKED = 0x00000080;
STATE_SYSTEM_INDETERMINATE = 0x00000020;
STATE_SYSTEM_INVISIBLE = 0x00008000;
STATE_SYSTEM_LINKED = 0x00400000;
STATE_SYSTEM_MARQUEED = 0x00002000;
STATE_SYSTEM_MIXED = 0x00000020;
STATE_SYSTEM_MOVEABLE = 0x00040000;
STATE_SYSTEM_MULTISELECTABLE = 0x01000000;
STATE_SYSTEM_NORMAL = 0x00000000;
STATE_SYSTEM_OFFSCREEN = 0x00010000;
STATE_SYSTEM_PRESSED = 0x00000008;
STATE_SYSTEM_PROTECTED = 0x20000000;
STATE_SYSTEM_READONLY = 0x00000040;
STATE_SYSTEM_SELECTABLE = 0x00200000;
STATE_SYSTEM_SELECTED = 0x00000002;
STATE_SYSTEM_SELFVOICING = 0x00080000;
STATE_SYSTEM_SIZEABLE = 0x00020000;
STATE_SYSTEM_TRAVERSED = 0x00800000;
STATE_SYSTEM_UNAVAILABLE = 0x00000001;

Presenter
Presentation Notes
The following values describe the states of objects. An object is associated with one or more of these state values at any time.��By default all objects can have the following states:�
STATE_SYSTEM_NORMAL:uint = 0x00000000;
STATE_SYSTEM_FOCUSABLE:uint = 0x00100000;
STATE_SYSTEM_UNAVAILABLE:uint = 0x00000001;

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 34

Constants in MSAA

Selection Flags
SELFLAG_TAKEFOCUS = 0x01;
SELFLAG_TAKESELECTION = 0x02;
SELFLAG_EXTENDSELECTION = 0x04;
SELFLAG_ADDSELECTION = 0x08;
SELFLAG_REMOVESELECTION = 0x10;

Presenter
Presentation Notes
These are used by the accSelect() method to flag the type of selection.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 35

Event Constants

Constants in MSAA

EVENT_OBJECT_CREATE = 0x8000;
EVENT_OBJECT_DESTROY = 0x8001;
EVENT_OBJECT_SHOW = 0x8002;
EVENT_OBJECT_HIDE = 0x8003;
EVENT_OBJECT_REORDER = 0x8004;
EVENT_OBJECT_FOCUS = 0x8005;
EVENT_OBJECT_SELECTION = 0x8006;
EVENT_OBJECT_SELECTIONADD = 0x8007;
EVENT_OBJECT_SELECTIONREMOVE = 0x8008;
EVENT_OBJECT_SELECTIONWITHIN = 0x8009;
EVENT_OBJECT_STATECHANGE = 0x800a;
EVENT_OBJECT_LOCATIONCHANGE = 0x800b;
EVENT_OBJECT_NAMECHANGE = 0x800c;
EVENT_OBJECT_DESCRIPTIONCHANGE = 0x800d;
EVENT_OBJECT_VALUECHANGE = 0x800e;
EVENT_OBJECT_PARENTCHANGE = 0x800f;
EVENT_OBJECT_HELPCHANGE = 0x8010;
EVENT_OBJECT_DEFACTIONCHANGE = 0x8011;
EVENT_OBJECT_ACCELERATORCHANGE = 0x8012;

Presenter
Presentation Notes
MSAA specifies Event constants for the type of events that are dispatched from applications.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 36

mx.accessibility.AccImpl

Abstract class extends AccessibilityImplementation for Flex components

 Properties
 .eventsToHandle : Array

All subclasses must override this function by returning an array
of strings of the events to listen for.

 .master : UIComponent
A reference to the UIComponent instance that this AccImpl
instance is making accessible.

 .role : uint
Accessibility role constant of the component being made accessible.
http://livedocs.adobe.com/flex/3/langref/accessibilityImplementationConstants.html#roles

http://livedocs.adobe.com/flex/3/langref/accessibilityImplementationConstants.html�

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 37

mx.accessibility.AccImpl

Abstract class extends AccessibilityImplementation for Flex component

 Methods
 enableAccessibility()

This method is called by application startup code that is autogenerated by
the MXML compiler.

At runtime, when instances of that type of component are initialized, their
accessibilityImplementation property will be set to an instance of this
class.

 eventHandler()
Handles events dispatched from the master UIComponent.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 38

Creating mx.accessibility.PopUpButtonAccImpl

Start with component class definition mx.controls.PopUpMenu
 Add [AccessibilityClass] metadata declaration to let the compiler know
where to find the AccessibilityImplementation for the component.

[AccessibilityClass(implementation="mx.accessibility.PopUpButtonAccImpl")]

 Within the class definition, add the following placeholder for the “mix-in” function

mx_internal static var createAccessibilityImplementation:Function;

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 39

Creating mx.accessibility.PopUpButtonAccImpl

Continue with mx.controls.PopUpMenu
 Override the UIComponent.initializeAccessibility() method with the

following to initialize the AccessibilityImplementation for a given component
instance at runtime.

override protected function initializeAccessibility():void {

if (PopUpButton.createAccessibilityImplementation != null)

PopUpButton.createAccessibilityImplementation(this);

}

Presenter
Presentation Notes
The initializeAccessibility() method is invoked by the UIComponent.initialize() method to initialize accessibility for a component instance at runtime.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 40

Creating mx.accessibility.PopUpButtonAccImpl

Copy over the similar mx.accessibility.ButtonAccImpl subclass to a
new ActionScript class called mx.controls.PopUpMenuAccImpl

 Refactor mx.accessibility.ButtonAccImpl to mx.controls.PopUpMenuAccImpl in
new class definition.

…

public class PopUpButtonAccImpl extends AccImpl

{

…

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 41

Creating mx.accessibility.PopUpButtonAccImpl

Class Initialization
…

private static var accessibilityHooked:Boolean = hookAccessibility();

…

private static function hookAccessibility():Boolean

{

PopUpButton.createAccessibilityImplementation =

createAccessibilityImplementation;

return true;

}

…

Presenter
Presentation Notes
The hookAccessibility method defines the PopUpButton class' static createAccessibilityImplementation to use the method of the same name defined in the PopUpButtonAccImpl class.

It will get called once at runtime when the PopUpButtonAccImpl class initializes and defines the static accessibilityHooked property.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 42

Creating mx.accessibility.PopUpButtonAccImpl

Class Methods
…

mx_internal static function
createAccessibilityImplementation(component:UIComponent):void

{

component.accessibilityImplementation =

new PopUpButtonAccImpl(component);

}

…

public static function enableAccessibility():void

{

}

…

Presenter
Presentation Notes
The createAccessibilityImplementation() method is called by the initializeAccessibility() method for the UIComponent subclass when the component initializes.

All AccImpl subclasses must implement this method.

The enableAccessibility() method is required for the compiler to activate the accessibility classes for a component.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 43

Creating mx.accessibility.PopUpButtonAccImpl

Class Constants
…

private static const STATE_SYSTEM_PRESSED:uint = 0x00000008;

private static const STATE_SYSTEM_HOTTRACKED:uint = 0x00000080;

private static const STATE_SYSTEM_HASPOPUP:uint = 0x40000000;

private static const EVENT_OBJECT_NAMECHANGE:uint = 0x800C;

private static const EVENT_OBJECT_STATECHANGE:uint = 0x800A;

private static const ROLE_SYSTEM_SPLITBUTTON:uint = 0x3e;

private static const ROLE_SYSTEM_BUTTONDROPDOWN:uint = 0x38;

…

More detail on SplitButton Control:

http://msdn.microsoft.com/en-
us/library/bb404170.aspx#ActiveAccessibility2007OfficeFluentUI_TheSplitButtonControl

Presenter
Presentation Notes
System roles and states are predefined for all components in MSAA.

The MSAA documentation has a list of guidelines for accessible object implementations that documents which constants are used by which component types.
Unfortunately, the User Interface Element Reference for MSAA omits the pop-up button. In order to figure out the appropriate role and state constants for the PopUpButton Accessibility Implementation, use the AccExplorer, Inspect32, and AccEvent tools available in the Microsoft Active Accessibility 2.0 SDK to examine a similar existing component in Windows. Fortunately, the Flex Builder 3 IDE and Eclipse plug-in use the pop-up button for a number of items in the main toolbar. Launch Inspect32. Mouse over the Run icon button in the Flex Builder 3 main toolbar. The Inspect32 tool should update to reveal the following information:

The Inspect32 tool reveals that the pop-up button should have the role of "split button" and one child named "Open" with the role "drop down button." When the control has been moused over or has keyboard focus, its state should be "hot tracked." A search on http://msdn.microsoft.com/ for "SplitButton accessibility" returns a more detailed and useful description of the SplitButton control's accessibiliy implementation, Working with Active Accessibility in the 2007 Office Fluent User Interface: The SplitButton Control. This more detailed description states that we should also expose the state of the child drop-down button that opens a popup menu as "has popup."

http://msdn.microsoft.com/en-us/library/bb404170.aspx�
http://msdn.microsoft.com/en-us/library/bb404170.aspx�

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 44

Creating mx.accessibility.PopUpButtonAccImpl

Constructor
…

public function PopUpButtonAccImpl(master:UIComponent)

{

super(master);

role = ROLE_SYSTEM_SPLITBUTTON;

}

…

We set the role in the constructor to ROLE_SYSTEM_SPLITBUTTON.

Presenter
Presentation Notes
System roles and states are predefined for all components in MSAA.

The MSAA documentation has a list of guidelines for accessible object implementations that documents which constants are used by which component types.
Unfortunately, the User Interface Element Reference for MSAA omits the pop-up button. In order to figure out the appropriate role and state constants for the PopUpButton Accessibility Implementation, use the AccExplorer, Inspect32, and AccEvent tools available in the Microsoft Active Accessibility 2.0 SDK to examine a similar existing component in Windows. Fortunately, the Flex Builder 3 IDE and Eclipse plug-in use the pop-up button for a number of items in the main toolbar. Launch Inspect32. Mouse over the Run icon button in the Flex Builder 3 main toolbar. The Inspect32 tool should update to reveal the following information:

The Inspect32 tool reveals that the pop-up button should have the role of "split button" and one child named "Open" with the role "drop down button." When the control has been moused over or has keyboard focus, its state should be "hot tracked." A search on http://msdn.microsoft.com/ for "SplitButton accessibility" returns a more detailed and useful description of the SplitButton control's accessibiliy implementation, Working with Active Accessibility in the 2007 Office Fluent User Interface: The SplitButton Control. This more detailed description states that we should also expose the state of the child drop-down button that opens a popup menu as "has popup."

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 45

Creating mx.accessibility.PopUpButtonAccImpl

Override eventsToHandle getter method inherited from
mx.accessibility.AccImpl

…

override protected function eventHandler(event:Event):void {

switch (event.type) {

case "click":

Accessibility.sendEvent(master, 0, EVENT_OBJECT_STATECHANGE);

Accessibility.updateProperties();

break;

case "labelChanged":

Accessibility.sendEvent(master, 0, EVENT_OBJECT_NAMECHANGE);

Accessibility.updateProperties();

break;

}

}

…

Presenter
Presentation Notes
Update the eventHandler() method to handle any events to which the PopUpButtonAccImpl should listen from its master component.
In this example, the handled events should be the same as for the ButtonAccImpl, "click" and "labelChanged".��The eventHandler() method handles events from the master component and sends the appropriate object or system event to MSAA using the flash.accessibility.Accessibility.sendEvent() method. Depending on the object or system event it receives, the MSAA system will call the IAccessible method to retrieve the appropriate value from the object that sent the event.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 46

Creating mx.accessibility.PopUpButtonAccImpl

Override eventHandler() method inherited from
mx.accessibility.AccImpl

…

override protected function get eventsToHandle():Array

{

return super.eventsToHandle.concat(["click", "labelChanged"]);

}

…

Presenter
Presentation Notes
Update the eventsToHandle() method to include any additional events to which the PopUpButtonAccImpl should listen from its master component.
In this example, the events should be the same as for the ButtonAccImpl, "click" and "labelChanged".

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 47

Creating mx.accessibility.PopUpButtonAccImpl

Override get_accRole method inherited from
flash.accessibility.AccessibilityImplementation

…

override public function get_accRole(childID:uint):uint

{

if (childID == 0)

return role;

return ROLE_SYSTEM_BUTTONDROPDOWN;

}

…

Presenter
Presentation Notes
Pop-up buttons have one child, a button dropdown.

The get_accRole() method should return the appropriate role constant for the master component or for one of its children.
The PopUpButtonAccImpl returns ROLE_SYSTEM_SPLITBUTTON (0x3e), while its child drop-down button returns ROLE_SYSTEM_BUTTONDROPDOWN (0x38).

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 48

Creating mx.accessibility.PopUpButtonAccImpl

Override get_accValue method inherited from
flash.accessibility.AccessibilityImplementation

…
override public function get_accValue(childID:uint):String{

var accValue:String;

var popUpButton:PopUpButton = PopUpButton(master);

if(childID == 0){

var label:String = popUpButton.label;

if(popUpButton.popUp && popUpButton.popUp is Menu && label != null && label != ""){

// If the popUp exists and is a Menu and the label exists and is not an empty string...

var popUpMenu:Menu = popUpButton.popUp as Menu;

if(popUpMenu.itemToLabel(popUpMenu.selectedItem) == label){

// If the label matches the popUp menu's selectedIndex, return the label as the accValue.

accValue = popUpMenu.itemToLabel(popUpMenu.selectedItem);

if(popUpButton.accessibilityProperties && popUpButton.accessibilityProperties.shortcut)

// If a keyboard shortcut is defined in the PopUpButton's .accessibilityProperties object,
// append it to the returned accValue.

accValue += " ("+popUpButton.accessibilityProperties.shortcut+")";

}

}

return accValue;

}

…

Presenter
Presentation Notes
The get_accValue() method returns the appropriate value for the component or for one of its child elements.

If the PopUpButton component's label property is equal to the label of the selectedItem in its popUp menu, the get_accValue() method should return the value of the label property.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 49

Creating mx.accessibility.PopUpButtonAccImpl

Override get_accState method inherited from
flash.accessibility.AccessibilityImplementation

…
override public function get_accState(childID:uint):uint{

// the normal default state

var accState:uint = 0;

var popUpButton:PopUpButton = PopUpButton(master);

if(childID == 1){ // the drop-down button

if(popUpButton.popUp) accState = STATE_SYSTEM_HASPOPUP;

if(popUpButton.mx_internal::isShowingPopUp == true) accState |= STATE_SYSTEM_PRESSED;

} else {

accState = getState(childID);

if (popUpButton.selected) accState |= STATE_SYSTEM_PRESSED;

}

var mouseX:Number = master.mouseX, mouseY:Number = master.mouseY, bounds:Rectangle = master.getBounds(master);

if((mouseX >= bounds.x && mouseX <= (bounds.x + bounds.width)

&& mouseY >= bounds.y && mouseY <= (bounds.y + bounds.height))

|| (popUpButton.focusManager.getFocus() == popUpButton)) accState |= STATE_SYSTEM_HOTTRACKED;

return accState;

}

…

Presenter
Presentation Notes
The get_accState() method should return the appropriate state constant or state constants for the master component or for one of its children.

If the PopUpButton has a popUp property, its child drop-down button should have the state STATE_SYSTEM_HASPOPUP (0x40000000).

If the popUp menu is showing, the drop-down button should also have the state STATE_SYSTEM_PRESSED (0x00000008).

If the PopUpButton itself is selected, it should have the state STATE_SYSTEM_PRESSED (0x00000008).

Both the PopUpButton and its child drop-down button should have the state STATE_SYSTEM_HOTTRACKED (0x00000080) when the PopUpButton is either moused over or has keyboard focus.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 50

Creating mx.accessibility.PopUpButtonAccImpl

Override getChildIDArray method inherited from
flash.accessibility.AccessibilityImplementation

…

override public function getChildIDArray():Array

{

var childIDs:Array = [];

for (var i:int = 0; i < 1; i++)

{

childIDs[i] = i + 1;

}

return childIDs;

}

…

Presenter
Presentation Notes
The getChildIDArray() method returns an array containing the unsigned integer IDs of all child elements in the accessibility implementation.

The length of the array may be zero.

The IDs in the array should appear in the same logical order as the child elements they represent.

This method is mandatory for any accessibility implementation that can contain child elements; otherwise it should not be implemented.

For the PopUpButtonAccImpl, the getChildIDArray() method returns an array containing a single element with a value of 1,
which represents the PopUpButton's child drop-down button element.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 51

Creating mx.accessibility.PopUpButtonAccImpl

Override get_accDefaultAction method inherited from
flash.accessibility.AccessibilityImplementation

…

override public function get_accDefaultAction(childID:uint):String

{

if(childID == 0){

return "Press";

}

return "Open";

}

…

Presenter
Presentation Notes
Update the get_accDefaultAction() method to return the appropriate default action for the master component or for one of its children.

For the PopUpButton component itself, the method returns “Press”,

and for the component's child drop-down button, the method returns “Open.”

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 52

Creating mx.accessibility.PopUpButtonAccImpl

Override accDoDefaultAction method inherited from
flash.accessibility.AccessibilityImplementation

…
override public function accDoDefaultAction(childID:uint):void {

var popUpButton:mx.controls.PopUpButton = PopUpButton (master);

if (childID==0) { // force a keyboard click

var event:KeyboardEvent = new KeyboardEvent(KeyboardEvent.KEY_DOWN);

event.keyCode = Keyboard.SPACE;

master.dispatchEvent(event);

event = new KeyboardEvent(KeyboardEvent.KEY_UP);

event.keyCode = Keyboard.SPACE;

master.dispatchEvent(event);

} else if(childID == 1){ // toggle the popIp button

if(popUpButton.mx_internal::isShowingPopUp == true){

popUpButton.close();

} else {

popUpButton.open();

}

}

}

…

Presenter
Presentation Notes
The addDoDefaultAction() method executes the default action for the master component or for one of its children.

For the PopUpButton component itself, the method simulates a button click.

For the child drop-down button element, the method either opens or closes the popUp.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 53

Creating mx.accessibility.PopUpButtonAccImpl

Override getName method inherited from
mx.accessibility.AccImpl

…
override protected function getName(childID:uint):String {

var popUpButton:mx.controls.PopUpButton = master as mx.controls.PopUpButton;

var popUp:UIComponent = popUpButton.popUp as UIComponent;

if(popUp){

if(!popUp.accessibilityProperties) popUp.accessibilityProperties = new AccessibilityProperties();

if(popUp.accessibilityProperties.name == "") popUp.accessibilityProperties.name = "Context";

}

if(childID == 1) return (popUpButton.mx_internal::isShowingPopUp == true) ? "Close" : "Open";

var label:String = popUpButton.label;

return label != null && label != "" ? label + " PopUpButton" : "PopUpButton";

}

…

Presenter
Presentation Notes
The getName() method returns the appropriate name for the master component or for one of its children.

For the PopUpButton component itself, the method should return its label property as its name.

The component's child drop-down button returns either “Open” or “Close” depending on whether or not the popUp is showing.

For the PopUpButton, this method also adds “Context” as the name of the popUp menu if no other name has been defined.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 54

Creating mx.accessibility.PopUpButtonAccImpl

Override accLocation method inherited from
flash.accessibility.AccessibilityImplementation

…
override public function accLocation(childID:uint):* {

var location:* = master; // the master component

if(childID == 1){

// calculate the rectangle location of the child drop-down button

var popUpButton:PopUpButton = master as PopUpButton;

var popUpButtonRect:Rectangle = popUpButton.getRect(popUpButton);

var arrowButtonsWidth:Number = popUpButton.mx_internal::getArrowButtonsWidth();

location = new Rectangle(

popUpButtonRect.x + popUpButton.width - arrowButtonsWidth,

popUpButtonRect.y,

arrowButtonsWidth,

popUpButton.height);

}

return location;

}

…

Presenter
Presentation Notes
The accLocation() method returns the bounding box of the master component, or that of one of its children, relative to the master component's stage.

The PopUpButton returns itself as the its bounding box location.

Its child drop-down button returns its bounding box as a Rectangle with its bounds determined programmatically.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 55

Creating mx.accessibility.PopUpButtonAccImpl

Test with MSAA SDK tools and screen readers

There will be bugs.
But don’t get discouraged.

You’re at MAX.

You can do this!

Presenter
Presentation Notes
Inspect32 reveals how the PopUpButton Accessibility Implementation exposes itself to MSAA, as an object with the role “split button,”, with name and value equal to “Paste,”
having the default action “Press.” The object's state includes “focused” and “hot tracked”.
It contains a single child with the role “drop down button,” that has the name “Open.”
The child object's state includes “hot tracked” and “has popup.”

Inspect32 also allows you to test navigation and interaction programmatically. For example, with the Flash movie focused, type Ctrl+Shift+F12 to navigate to the next item or type Ctrl+Shift+F11 to navigate to the previous item in the MSAA hierarchy. Use Ctrl+Shift+F12 and/or Ctrl+Shift+F11 to set focus on the PopUpMenuButton instance's child drop down button. Type Ctrl+Shift+F2 to execute the default action for the drop down button. This should open the popUp menu.

The drop down button name should change to “Close,” and its state should indicate “pressed.” Type Ctrl+Shift+F2 again to close the menu.

Once you're fairly confident that your accessibility implementation is returning appropriate values for its IAccessible methods, you should test again using a screen reader that is capable of interpreting Flash content such as Freedom Scientific's JAWS or GW Micro's Window-Eyes.

It is not uncommon for a component to not behave quite as expected when testing it with a screen reader.

For example, the keyboard command Ctrl+Down Arrow, which is used in the PopUpButton component to open the popUp menu,
is also the standard keyboard command in JAWS to move one paragraph down in the text.

Using Ctrl+Shift+Down Arrow instead of Ctrl+Down Arrow will open the menu, but it's not obvious to the user.
A better solution is to update the PopUpButton component, to allow it to open by simply keying the Down Arrow.

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 56

Questions?

Usefulness

http://www.adobe.com/accessibility/

http://blogs.adobe.com/accessibility/

http://blogs.adobe.com/koestler/

http://livedocs.adobe.com/flex/3/langref/flash/accessibility/package-
detail.html

http://majordan.net/adobe/msaa_documentation/html/accessible_7b.html

http://www.microsoft.com/downloads/details.aspx?familyid=3755582A-
A707-460A-BF21-1373316E13F0&displaylang=en

http://www.eclipse.org/actf/downloads/tools/aDesigner/index.php

http://majordan.net/AccLinkExample/

http://www.adobe.com/accessibility/�
http://blogs.adobe.com/accessibility/�
http://blogs.adobe.com/koestler/�
http://livedocs.adobe.com/flex/3/langref/flash/accessibility/package-detail.html�
http://livedocs.adobe.com/flex/3/langref/flash/accessibility/package-detail.html�
http://livedocs.adobe.com/flex/3/langref/flash/accessibility/package-detail.html�
http://majordan.net/adobe/msaa_documentation/html/accessible_7b.html�
http://www.microsoft.com/downloads/details.aspx?familyid=3755582A-A707-460A-BF21-1373316E13F0&displaylang=en�
http://www.microsoft.com/downloads/details.aspx?familyid=3755582A-A707-460A-BF21-1373316E13F0&displaylang=en�
http://www.eclipse.org/actf/downloads/tools/aDesigner/index.php�
http://livedocs.adobe.com/flex/3/langref/flash/accessibility/package-detail.html�

®

Copyright 2009 Adobe Systems Incorporated. All rights reserved. Adobe confidential. 57

	Accessibility for Flex and AIR Applications
	Introduction
	Why do Flash accessibility?
	Why do Flash accessibility?
	Why do Flash accessibility?
	Why do Flash accessibility?
	Why do Flash accessibility?
	Why do Flash accessibility?
	Why do Flash accessibility?
	Why do Flash accessibility?
	Brief History of Flash Accessibility
	Brief History of Flash Accessibility
	Brief History of Flash Accessibility
	Brief History of Flash Accessibility
	Accessibility in Flex
	Accessibility in Flex
	Accessibility in Flex
	Accessibility in Flex
	Accessibility in Flex
	Accessibility in Flex
	Accessibility in Flex
	Accessibility in Flex
	Accessibility in Flex
	Accessibility in Flex
	Accessibility in Flex
	Building Accessible Custom Controls
	FlashPlayer and Microsoft Active Accessibility
	FlashPlayer and Microsoft Active Accessibility
	FlashPlayer and Microsoft Active Accessibility
	The FlashPlayer’s accessible object model
	flash.accessibility.AccessibilityImplementation
	Constants in MSAA
	Constants in MSAA
	Constants in MSAA
	Constants in MSAA
	mx.accessibility.AccImpl
	mx.accessibility.AccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Creating mx.accessibility.PopUpButtonAccImpl
	Questions?
	Slide Number 57

